Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Physiol Plant ; 176(3): e14325, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715548

RESUMEN

Boosting plant immunity by priming agents can lower agrochemical dependency in plant production. Levan and levan-derived oligosaccharides (LOS) act as priming agents against biotic stress in several crops. Additionally, beneficial microbes can promote plant growth and protect against fungal diseases. This study assessed possible synergistic effects caused by levan, LOS and five levan- and LOS-metabolizing Bacillaceae (Bacillus and Priestia) strains in tomato and wheat. Leaf and seed defense priming assays were conducted in non-soil (semi-sterile substrate) and soil-based systems, focusing on tomato-Botrytis cinerea and wheat-Magnaporthe oryzae Triticum (MoT) pathosystems. In the non-soil system, seed defense priming with levan, the strains (especially Bacillus velezensis GA1), or their combination significantly promoted tomato growth and protection against B. cinerea. While no growth stimulatory effects were observed for wheat, disease protective effects were also observed in the wheat-MoT pathosystem. When grown in soil and subjected to leaf defense priming, tomato plants co-applied with levan and the bacterial strains showed increased resistance to B. cinerea compared with plants treated with levan or single strains, and these effects were synergistic in some cases. For seed defense priming in soil, more synergistic effects on disease tolerance were observed in a non-fertilized soil as compared to a fertilized soil, suggesting that potential prebiotic effects of levan are more prominent in poor soils. The potential of using combinations of Bacilliaceae and levan in sustainable agriculture is discussed.


Asunto(s)
Bacillus , Fructanos , Enfermedades de las Plantas , Solanum lycopersicum , Triticum , Fructanos/metabolismo , Triticum/microbiología , Triticum/metabolismo , Triticum/inmunología , Triticum/crecimiento & desarrollo , Solanum lycopersicum/microbiología , Solanum lycopersicum/inmunología , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Bacillus/fisiología , Botrytis , Inmunidad de la Planta , Resistencia a la Enfermedad , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Hojas de la Planta/inmunología , Oligosacáridos/metabolismo , Oligosacáridos/farmacología , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Semillas/microbiología , Semillas/inmunología , Ascomicetos
2.
Proc Natl Acad Sci U S A ; 121(18): e2318666121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38652747

RESUMEN

In bacteria, intracellular K+ is involved in the regulation of membrane potential, cytosolic pH, and cell turgor as well as in spore germination, environmental adaptation, cell-to-cell communication in biofilms, antibiotic sensitivity, and infectivity. The second messenger cyclic-di-AMP (c-di-AMP) has a central role in modulating the intracellular K+ concentration in many bacterial species, controlling transcription and function of K+ channels and transporters. However, our understanding of how this regulatory network responds to c-di-AMP remains poor. We used the RCK (Regulator of Conductance of K+) proteins that control the activity of Ktr channels in Bacillus subtilis as a model system to analyze the regulatory function of c-di-AMP with a combination of in vivo and in vitro functional and structural characterization. We determined that the two RCK proteins (KtrA and KtrC) are neither physiologically redundant or functionally equivalent. KtrC is the physiologically dominant RCK protein in the regulation of Ktr channel activity. In explaining this hierarchical organization, we found that, unlike KtrA, KtrC is very sensitive to c-di-AMP inactivation and lack of c-di-AMP regulation results in RCK protein toxicity, most likely due to unregulated K+ flux. We also found that KtrC can assemble with KtrA, conferring c-di-AMP regulation to the functional KtrA/KtrC heteromers and potentially compensating KtrA toxicity. Altogether, we propose that the central role of c-di-AMP in the control of the K+ machinery, by modulating protein levels through gene transcription and by regulating protein activity, has determined the evolutionary selection of KtrC as the dominant RCK protein, shaping the hierarchical organization of regulatory components of the K+ machinery.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Potasio/metabolismo , Regulación Bacteriana de la Expresión Génica , Fosfatos de Dinucleósidos/metabolismo , Canales de Potasio/metabolismo , Canales de Potasio/genética
3.
Microb Biotechnol ; 17(3): e14429, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38483038

RESUMEN

Glutamate serves as the major cellular amino group donor. In Bacillus subtilis, glutamate is synthesized by the combined action of the glutamine synthetase and the glutamate synthase (GOGAT). The glutamate dehydrogenases are devoted to glutamate degradation in vivo. To keep the cellular glutamate concentration high, the genes and the encoded enzymes involved in glutamate biosynthesis and degradation need to be tightly regulated depending on the available carbon and nitrogen sources. Serendipitously, we found that the inactivation of the ansR and citG genes encoding the repressor of the ansAB genes and the fumarase, respectively, enables the GOGAT-deficient B. subtilis mutant to synthesize glutamate via a non-canonical fumarate-based ammonium assimilation pathway. We also show that the de-repression of the ansAB genes is sufficient to restore aspartate prototrophy of an aspB aspartate transaminase mutant. Moreover, in the presence of arginine, B. subtilis mutants lacking fumarase activity show a growth defect that can be relieved by aspB overexpression, by reducing arginine uptake and by decreasing the metabolic flux through the TCA cycle.


Asunto(s)
Compuestos de Amonio , Fumarato Hidratasa/genética , Ácido Glutámico/metabolismo , Glutamato Deshidrogenasa/genética , Arginina , Nitrógeno/metabolismo
4.
mBio ; 15(4): e0345623, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38470260

RESUMEN

The Gram-positive model bacterium Bacillus subtilis can acquire amino acids by import, de novo biosynthesis, or degradation of proteins and peptides. The accumulation of several amino acids inhibits the growth of B. subtilis, probably due to misincorporation into cellular macromolecules such as proteins or peptidoglycan or due to interference with other amino acid biosynthetic pathways. Here, we studied the adaptation of B. subtilis to toxic concentrations of the three-carbon amino acids L-alanine, ß-alanine, and 2,3-diaminopropionic acid, as well as the two-carbon amino acid glycine. Resistance to the non-proteinogenic amino acid ß-alanine, which is a precursor for coenzyme A biosynthesis, is achieved by mutations that either activate a cryptic amino acid exporter, AexA (previously YdeD), or inactivate the amino acid importers AimA, AimB (previously YbxG), and BcaP. The aexA gene is very poorly expressed under most conditions studied. However, mutations affecting the transcription factor AerA (previously YdeC) can result in strong constitutive aexA expression. AexA is the first characterized member of a group of amino acid exporters in B. subtilis, which are all very poorly expressed. Therefore, we suggest to call this group "sleeping beauty amino acid exporters." 2,3-Diaminopropionic acid can also be exported by AexA, and this amino acid also seems to be a natural substrate of AerA/AexA, as it can cause a slight but significant induction of aexA expression, and AexA also provides some natural resistance toward 2,3-diaminopropionic acid. Moreover, our work shows how low-specificity amino acid transporters contribute to amino acid homeostasis in B. subtilis.IMPORTANCEEven though Bacillus subtilis is one of the most-studied bacteria, amino acid homeostasis in this organism is not fully understood. We have identified import and export systems for the C2 and C3 amino acids. Our work demonstrates that the responsible amino acid permeases contribute in a rather promiscuitive way to amino acid uptake. In addition, we have discovered AexA, the first member of a group of very poorly expressed amino acid exporters in B. subtilis that we call "sleeping beauty amino acid exporters." The expression of these transporters is typically triggered by mutations in corresponding regulator genes that are acquired upon exposure to toxic amino acids. These exporters are ubiquitous in all domains of life. It is tempting to speculate that many of them are not expressed until the cells experience selective pressure by toxic compounds, and they protect the cells from rare but potentially dangerous encounters with such compounds.


Asunto(s)
Aminoácidos , Bacillus subtilis , Aminoácidos/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Homeostasis , Sistemas de Transporte de Aminoácidos , beta-Alanina/metabolismo
5.
J Bacteriol ; 206(2): e0042023, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38193659

RESUMEN

The Gram-positive model bacterium B. subtilis is able to import all proteinogenic amino acids from the environment as well as to synthesize them. However, the players involved in the acquisition of asparagine have not yet been identified for this bacterium. In this work, we used d-asparagine as a toxic analog of l-asparagine to identify asparagine transporters. This revealed that d- but not l-asparagine is taken up by the malate/lactate antiporter MleN. Specific strains that are sensitive to the presence of l-asparagine due to the lack of the second messenger cyclic di-AMP or due to the intracellular accumulation of this amino acid were used to isolate and characterize suppressor mutants that were resistant to the presence of otherwise growth-inhibiting concentrations of l-asparagine. These screens identified the broad-spectrum amino acid importers AimA and BcaP as responsible for the acquisition of l-asparagine. The amino acid exporter AzlCD allows detoxification of l-asparagine in addition to 4-azaleucine and histidine. This work supports the idea that amino acids are often transported by promiscuous importers and exporters. However, our work also shows that even stereo-enantiomeric amino acids do not necessarily use the same transport systems.IMPORTANCETransport of amino acid is a poorly studied function in many bacteria, including the model organism Bacillus subtilis. The identification of transporters is hampered by the redundancy of transport systems for most amino acids as well as by the poor specificity of the transporters. Here, we apply several strategies to use the growth-inhibitive effect of many amino acids under defined conditions to isolate suppressor mutants that exhibit either reduced uptake or enhanced export of asparagine, resulting in the identification of uptake and export systems for l-asparagine. The approaches used here may be useful for the identification of transporters for other amino acids both in B. subtilis and in other bacteria.


Asunto(s)
Aminoácidos , Asparagina , Aminoácidos/metabolismo , Asparagina/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Homeostasis
6.
Nucleic Acids Res ; 52(3): 1404-1419, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38050972

RESUMEN

Even though Bacillus subtilis is one of the most studied organisms, no function has been identified for about 20% of its proteins. Among these unknown proteins are several RNA- and ribosome-binding proteins suggesting that they exert functions in cellular information processing. In this work, we have investigated the RNA-binding protein YlxR. This protein is widely conserved in bacteria and strongly constitutively expressed in B. subtilis suggesting an important function. We have identified the RNA subunit of the essential RNase P as the binding partner of YlxR. The main activity of RNase P is the processing of 5' ends of pre-tRNAs. In vitro processing assays demonstrated that the presence of YlxR results in reduced RNase P activity. Chemical cross-linking studies followed by in silico docking analysis and experiments with site-directed mutant proteins suggest that YlxR binds to the region of the RNase P RNA that is important for binding and cleavage of the pre-tRNA substrate. We conclude that the YlxR protein is a novel interaction partner of the RNA subunit of RNase P that serves to finetune RNase P activity to ensure appropriate amounts of mature tRNAs for translation. We rename the YlxR protein RnpM for RNase P modulator.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Proteínas de Unión al ARN , Ribonucleasa P , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Endorribonucleasas/metabolismo , Ribonucleasa P/metabolismo , Precursores del ARN/metabolismo , ARN Bacteriano/metabolismo , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/metabolismo
7.
Int J Med Microbiol ; 313(6): 151591, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38043216

RESUMEN

Listeria monocytogenes is a Gram positive foodborne pathogen that regularly causes outbreaks of systemic infectious diseases. The bacterium maintains a facultative intracellular lifestyle; it thrives under a variety of environmental conditions and is able to infect human host cells. L. monocytogenes is genetically tractable and therefore has become an attractive model system to study the mechanisms employed by facultative intracellular bacteria to invade eukaryotic cells and to replicate in their cytoplasm. Besides its importance for basic research, L. monocytogenes also serves as a paradigmatic pathogen in genomic epidemiology, where the relative stability of its genome facilitates successful outbreak detection and elucidation of transmission chains in genomic pathogen surveillance systems. In both terms, it is necessary to keep the annotation of the L. monocytogenes genome up to date. Therefore, we have created the database ListiWiki (http://listiwiki.uni-goettingen.de/) which stores comprehensive information on the widely used L. monocytogenes reference strain EDG-e. ListiWiki is designed to collect information on genes, proteins and RNAs and their relevant functional characteristics, but also further information such as mutant phenotypes, available biological material, and publications. In its present form, ListiWiki combines the most recent annotation of the EDG-e genome with published data on gene essentiality, gene expression and subcellular protein localization. ListiWiki also predicts protein-protein interactions networks based on protein homology to Bacillus subtilis proteins, for which detailed interaction maps have been compiled in the sibling database SubtiWiki. Furthermore, crystallographic information of proteins is made accessible through integration of Protein Structure Database codes and AlphaFold structure predictions. ListiWiki is an easy-to-use web interface that has been developed with a focus on an intuitive access to all information. Use of ListiWiki is free of charge and its content can be edited by all members of the scientific community after registration. In our labs, ListiWiki has already become an important and easy to use tool to quickly access genome annotation details that we can keep updated with advancing knowledge. It also might be useful to promote the comprehensive understanding of the physiology and virulence of an important human pathogen.


Asunto(s)
Listeria monocytogenes , Listeriosis , Humanos , Listeria monocytogenes/genética , Genes Bacterianos , Mapas de Interacción de Proteínas , Genómica , Listeriosis/epidemiología , Proteínas Bacterianas/genética
8.
Microlife ; 4: uqad043, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954098

RESUMEN

The dinucleotide cyclic di-AMP (c-di-AMP) is synthesized as a second messenger in the Gram-positive model bacterium Bacillus subtilis as well as in many bacteria and archaea. Bacillus subtilis possesses three diadenylate cyclases and two phosphodiesterases that synthesize and degrade the molecule, respectively. Among the second messengers, c-di-AMP is unique since it is essential for B. subtilis on the one hand but toxic upon accumulation on the other. This role as an "essential poison" is related to the function of c-di-AMP in the control of potassium homeostasis. C-di-AMP inhibits the expression and activity of potassium uptake systems by binding to riboswitches and transporters and activates the activity of potassium exporters. In this way, c-di-AMP allows the adjustment of uptake and export systems to achieve a balanced intracellular potassium concentration. C-di-AMP also binds to two dedicated signal transduction proteins, DarA and DarB. Both proteins seem to interact with other proteins in their apo state, i.e. in the absence of c-di-AMP. For DarB, the (p)ppGpp synthetase/hydrolase Rel and the pyruvate carboxylase PycA have been identified as targets. The interactions trigger the synthesis of the alarmone (p)ppGpp and of the acceptor molecule for the citric acid cycle, oxaloacetate, respectively. In the absence of c-di-AMP, many amino acids inhibit the growth of B. subtilis. This feature can be used to identify novel players in amino acid homeostasis. In this review, we discuss the different functions of c-di-AMP and their physiological relevance.

9.
J Biol Chem ; 299(7): 104944, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37343703

RESUMEN

The Gram-positive bacterium Bacillus subtilis can utilize several proteinogenic and non-proteinogenic amino acids as sources of carbon, nitrogen, and energy. The utilization of the amino acids arginine, citrulline, and ornithine is catalyzed by enzymes encoded in the rocABC and rocDEF operons and by the rocG gene. The expression of these genes is controlled by the alternative sigma factor SigL. RNA polymerase associated with this sigma factor depends on ATP-hydrolyzing transcription activators to initiate transcription. The RocR protein acts as a transcription activator for the roc genes. However, the details of amino acid metabolism via this pathway are unknown. Here, we investigated the contributions of all enzymes of the Roc pathway to the degradation of arginine, citrulline, and ornithine. We identified the previously uncharacterized RocB protein as responsible for the conversion of citrulline to ornithine. In vitro assays with the purified enzyme suggest that RocB acts as a manganese-dependent N-carbamoyl-L-ornithine hydrolase that cleaves citrulline to form ornithine and carbamate. Moreover, the molecular effector that triggers transcription activation by RocR has not been unequivocally identified. Using a combination of transcription reporter assays and biochemical experiments, we demonstrate that ornithine is the molecular inducer of RocR activity. Taken together, our work suggests that binding of ATP to RocR triggers its hexamerization, and binding of ornithine then allows ATP hydrolysis and activation of roc gene transcription. Thus, ornithine is the central molecule of the roc degradative pathway as it is the common intermediate of arginine and citrulline degradation and the molecular effector of RocR.


Asunto(s)
Arginina , Bacillus subtilis , Ornitina , Factor sigma , Adenosina Trifosfato/metabolismo , Arginina/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citrulina/metabolismo , Ornitina/metabolismo , Factor sigma/metabolismo , Factores de Transcripción/metabolismo
10.
J Bacteriol ; 205(5): e0010223, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37140386

RESUMEN

Next to Escherichia coli, Bacillus subtilis is the most studied and best understood organism that also serves as a model for many important pathogens. Due to its ability to form heat-resistant spores that can germinate even after very long periods of time, B. subtilis has attracted much scientific interest. Another feature of B. subtilis is its genetic competence, a developmental state in which B. subtilis actively takes up exogenous DNA. This makes B. subtilis amenable to genetic manipulation and investigation. The bacterium was one of the first with a fully sequenced genome, and it has been subject to a wide variety of genome- and proteome-wide studies that give important insights into many aspects of the biology of B. subtilis. Due to its ability to secrete large amounts of proteins and to produce a wide range of commercially interesting compounds, B. subtilis has become a major workhorse in biotechnology. Here, we review the development of important aspects of the research on B. subtilis with a specific focus on its cell biology and biotechnological and practical applications from vitamin production to concrete healing. The intriguing complexity of the developmental programs of B. subtilis, paired with the availability of sophisticated tools for genetic manipulation, positions it at the leading edge for discovering new biological concepts and deepening our understanding of the organization of bacterial cells.


Asunto(s)
Bacillus subtilis , Biotecnología , Bacillus subtilis/metabolismo , Esporas Bacterianas/genética
11.
Nucleic Acids Res ; 51(W1): W404-W410, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37140053

RESUMEN

The development of AlphaFold for protein structure prediction has opened a new era in structural biology. This is even more the case for AlphaFold-Multimer for the prediction of protein complexes. The interpretation of these predictions has become more important than ever, but it is difficult for the non-specialist. While an evaluation of the prediction quality is provided for monomeric protein predictions by the AlphaFold Protein Structure Database, such a tool is missing for predicted complex structures. Here, we present the PAE Viewer webserver (http://www.subtiwiki.uni-goettingen.de/v4/paeViewerDemo), an online tool for the integrated visualization of predicted protein complexes using a 3D structure display combined with an interactive representation of the Predicted Aligned Error (PAE). This metric allows an estimation of the quality of the prediction. Importantly, our webserver also allows the integration of experimental cross-linking data which helps to interpret the reliability of the structure predictions. With the PAE Viewer, the user obtains a unique online tool which for the first time allows the intuitive evaluation of the PAE for protein complex structure predictions with integrated crosslinks.


Asunto(s)
Química Computacional , Modelos Moleculares , Proteínas , Programas Informáticos , Química Computacional/métodos , Bases de Datos de Proteínas , Internet , Estructura Terciaria de Proteína , Proteínas/química , Reproducibilidad de los Resultados , Interfaz Usuario-Computador
12.
Microlife ; 4: uqad015, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223732

RESUMEN

Nucleotide second messengers act as intracellular 'secondary' signals that represent environmental or cellular cues, i.e. the 'primary' signals. As such, they are linking sensory input with regulatory output in all living cells. The amazing physiological versatility, the mechanistic diversity of second messenger synthesis, degradation, and action as well as the high level of integration of second messenger pathways and networks in prokaryotes has only recently become apparent. In these networks, specific second messengers play conserved general roles. Thus, (p)ppGpp coordinates growth and survival in response to nutrient availability and various stresses, while c-di-GMP is the nucleotide signaling molecule to orchestrate bacterial adhesion and multicellularity. c-di-AMP links osmotic balance and metabolism and that it does so even in Archaea may suggest a very early evolutionary origin of second messenger signaling. Many of the enzymes that make or break second messengers show complex sensory domain architectures, which allow multisignal integration. The multiplicity of c-di-GMP-related enzymes in many species has led to the discovery that bacterial cells are even able to use the same freely diffusible second messenger in local signaling pathways that can act in parallel without cross-talking. On the other hand, signaling pathways operating with different nucleotides can intersect in elaborate signaling networks. Apart from the small number of common signaling nucleotides that bacteria use for controlling their cellular "business," diverse nucleotides were recently found to play very specific roles in phage defense. Furthermore, these systems represent the phylogenetic ancestors of cyclic nucleotide-activated immune signaling in eukaryotes.

13.
Mol Microbiol ; 120(1): 8-19, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36882621

RESUMEN

Model organisms such as the Gram-positive bacterium Bacillus subtilis have been studied intensively for decades. However, even for model organisms, no function has been identified for about one fourth of all proteins. It has recently been realized that such understudied proteins as well as poorly studied functions set a limitation to our understanding of the requirements for cellular life, and the Understudied Proteins Initiative has been launched. Of poorly studied proteins, those that are strongly expressed are likely to be important to the cell and should therefore be considered high priority in further studies. Since the functional analysis of unknown proteins can be extremely laborious, a minimal knowledge is required prior to targeted functional studies. In this review, we discuss strategies to obtain such a minimal annotation, for example, from global interaction, expression, or localization studies. We present a set of 41 highly expressed and poorly studied proteins of B. subtilis. Several of these proteins are thought or known to bind RNA and/or the ribosome, some may control the metabolism of B. subtilis, and another subset of particularly small proteins may act as regulatory elements to control the expression of downstream genes. Moreover, we discuss the challenges of poorly studied functions with a focus on RNA-binding proteins, amino acid transport, and the control of metabolic homeostasis. The identification of the functions of the selected proteins not only will strongly advance our knowledge on B. subtilis, but also on other organisms since many of the proteins are conserved in many groups of bacteria.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Ribosomas/metabolismo , Homeostasis
14.
Front Microbiol ; 14: 1117684, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846772

RESUMEN

Enterococcus is able to grow in media at pH from 5.0 to 9.0 and a high concentration of NaCl (8%). The ability to respond to these extreme conditions requires the rapid movement of three critical ions: proton (H+), sodium (Na+), and potassium (K+). The activity of the proton F0F1 ATPase and the sodium Na+ V0V1 type ATPase under acidic or alkaline conditions, respectively, is well established in these microorganisms. The potassium uptake transporters KtrI and KtrII were described in Enterococcus hirae, which were associated with growth in acidic and alkaline conditions, respectively. In Enterococcus faecalis, the presence of the Kdp (potassium ATPase) system was early established. However, the homeostasis of potassium in this microorganism is not completely explored. In this study, we demonstrate that Kup and KimA are high-affinity potassium transporters, and the inactivation of these genes in E. faecalis JH2-2 (a Kdp laboratory natural deficient strain) had no effect on the growth parameters. However, in KtrA defective strains (ΔktrA, ΔkupΔktrA) an impaired growth was observed under stress conditions, which was restored to wild type levels by external addition of K+ ions. Among the multiplicity of potassium transporters identify in the genus Enterococcus, Ktr channels (KtrAB and KtrAD), and Kup family symporters (Kup and KimA) are present and may contribute to the particular resistance of these microorganisms to different stress conditions. In addition, we found that the presence of the Kdp system in E. faecalis is strain-dependent, and this transporter is enriched in strains of clinical origin as compared to environmental, commensal, or food isolates.

15.
Mol Syst Biol ; 19(4): e11544, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36815589

RESUMEN

Accurately modeling the structures of proteins and their complexes using artificial intelligence is revolutionizing molecular biology. Experimental data enable a candidate-based approach to systematically model novel protein assemblies. Here, we use a combination of in-cell crosslinking mass spectrometry and co-fractionation mass spectrometry (CoFrac-MS) to identify protein-protein interactions in the model Gram-positive bacterium Bacillus subtilis. We show that crosslinking interactions prior to cell lysis reveals protein interactions that are often lost upon cell lysis. We predict the structures of these protein interactions and others in the SubtiWiki database with AlphaFold-Multimer and, after controlling for the false-positive rate of the predictions, we propose novel structural models of 153 dimeric and 14 trimeric protein assemblies. Crosslinking MS data independently validates the AlphaFold predictions and scoring. We report and validate novel interactors of central cellular machineries that include the ribosome, RNA polymerase, and pyruvate dehydrogenase, assigning function to several uncharacterized proteins. Our approach uncovers protein-protein interactions inside intact cells, provides structural insight into their interaction interfaces, and is applicable to genetically intractable organisms, including pathogenic bacteria.


Asunto(s)
Inteligencia Artificial , Proteómica , Proteómica/métodos , Proteínas/química , Espectrometría de Masas/métodos , Biología Molecular
16.
J Bacteriol ; 204(12): e0035322, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36377869

RESUMEN

The Gram-positive model bacterium Bacillus subtilis can use several amino acids as sources of carbon and nitrogen. However, some amino acids inhibit the growth of this bacterium. This amino acid toxicity is often enhanced in strains lacking the second messenger cyclic dimeric adenosine 3',5'-monophosphate (c-di-AMP). We observed that the presence of histidine is also toxic for a B. subtilis strain that lacks all three c-di-AMP synthesizing enzymes. However, suppressor mutants emerged, and whole-genome sequencing revealed mutations in the azlB gene that encode the repressor of the azl operon. This operon encodes an exporter and an importer for branched-chain amino acids. The suppressor mutations result in an overexpression of the azl operon. Deletion of the azlCD genes encoding the branched-chain amino acid exporter restored the toxicity of histidine, indicating that this exporter is required for histidine export and for resistance to otherwise toxic levels of the amino acid. The higher abundance of the amino acid exporter AzlCD increased the extracellular concentration of histidine, thus confirming the new function of AzlCD as a histidine exporter. Unexpectedly, the AzlB-mediated repression of the operon remains active even in the presence of amino acids, suggesting that the expression of the azl operon requires the mutational inactivation of AzlB. IMPORTANCE Amino acids are building blocks for protein biosynthesis in each living cell. However, due to their reactivity and the similarity between several amino acids, they may also be involved in harmful reactions or in noncognate interactions and thus may be toxic. Bacillus subtilis can deal with otherwise toxic histidine by overexpressing the bipartite amino acid exporter AzlCD. Although encoded in an operon that also contains a gene for an amino acid importer, the corresponding genes are not expressed, irrespective of the availability of amino acids in the medium. This suggests that the azl operon is a last resort by which to deal with histidine stress that can be expressed due to the mutational inactivation of the cognate repressor AzlB.


Asunto(s)
Bacillus subtilis , Histidina , Histidina/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Aminoácidos/metabolismo , Mutación , Operón , Regulación Bacteriana de la Expresión Génica
17.
Front Microbiol ; 13: 935066, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958127

RESUMEN

The human pathogen Mycoplasma pneumoniae is viable independently from host cells or organisms, despite its strongly reduced genome with only about 700 protein-coding genes. The investigation of M. pneumoniae can therefore help to obtain general insights concerning the basic requirements for cellular life. Accordingly, M. pneumoniae has become a model organism for systems biology in the past decade. To support the investigation of the components of this minimal bacterium, we have generated the database MycoWiki. (http://mycowiki.uni-goettingen.de) MycoWiki organizes data under a relational database and provides access to curated and state-of-the-art information on the genes and proteins of M. pneumoniae. Interestingly, M. pneumoniae has undergone an evolution that resulted in the limited similarity of many proteins to proteins of model organisms. To facilitate the analysis of the functions of M. pneumoniae proteins, we have integrated structure predictions from the AlphaFold Protein Structure Database for most proteins, structural information resulting from in vivo cross-linking, and protein-protein interactions based on a global in vivo study. MycoWiki is an important tool for the systems and synthetic biology community that will support the comprehensive understanding of a minimal organism and the functional annotation of so far uncharacterized proteins.

18.
J Biol Chem ; 298(7): 102144, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35714772

RESUMEN

The bacterial second messenger c-di-AMP controls essential cellular processes, including potassium and osmolyte homeostasis. This makes synthesizing enzymes and components involved in c-di-AMP signal transduction intriguing as potential targets for drug development. The c-di-AMP receptor protein DarB of Bacillus subtilis binds the Rel protein and triggers the Rel-dependent stringent response to stress conditions; however, the structural basis for this trigger is unclear. Here, we report crystal structures of DarB in the ligand-free state and of DarB complexed with c-di-AMP, 3'3'-cGAMP, and AMP. We show that DarB forms a homodimer with a parallel, head-to-head assembly of the monomers. We also confirm the DarB dimer binds two cyclic dinucleotide molecules or two AMP molecules; only one adenine of bound c-di-AMP is specifically recognized by DarB, while the second protrudes out of the donut-shaped protein. This enables DarB to bind also 3'3'-cGAMP, as only the adenine fits in the active site. In absence of c-di-AMP, DarB binds to Rel and stimulates (p)ppGpp synthesis, whereas the presence of c-di-AMP abolishes this interaction. Furthermore, the DarB crystal structures reveal no conformational changes upon c-di-AMP binding, leading us to conclude the regulatory function of DarB on Rel must be controlled directly by the bound c-di-AMP. We thus derived a structural model of the DarB-Rel complex via in silico docking, which was validated with mass spectrometric analysis of the chemically crosslinked DarB-Rel complex and mutagenesis studies. We suggest, based on the predicted complex structure, a mechanism of stringent response regulation by c-di-AMP.


Asunto(s)
Proteínas Bacterianas , Fosfatos de Dinucleósidos , Adenina/metabolismo , Adenosina Monofosfato/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Fosfatos de Dinucleósidos/química , Fosfatos de Dinucleósidos/metabolismo
19.
Nucleic Acids Res ; 50(D1): D875-D882, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34664671

RESUMEN

Bacillus subtilis is a Gram-positive model bacterium with extensive documented annotation. However, with the rise of high-throughput techniques, the amount of complex data being generated every year has been increasing at a fast pace. Thus, having platforms ready to integrate and give a representation to these data becomes a priority. To address it, SubtiWiki (http://subtiwiki.uni-goettingen.de/) was created in 2008 and has been growing in data and viewership ever since. With millions of requests every year, it is the most visited B. subtilis database, providing scientists all over the world with curated information about its genes and proteins, as well as intricate protein-protein interactions, regulatory elements, expression data and metabolic pathways. However, there is still a large portion of annotation to be unveiled for some biological elements. Thus, to facilitate the development of new hypotheses for research, we have added a Homology section covering potential protein homologs in other organisms. Here, we present the recent developments of SubtiWiki and give a guided tour of our database and the current state of the data for this organism.


Asunto(s)
Bacillus subtilis/genética , Bacterias/genética , Proteínas Bacterianas/genética , Bases de Datos Genéticas , Genoma Bacteriano , Programas Informáticos , Secuencia de Aminoácidos , Bacillus subtilis/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Regulación Bacteriana de la Expresión Génica , Redes Reguladoras de Genes , Internet , Redes y Vías Metabólicas/genética , Modelos Moleculares , Anotación de Secuencia Molecular , Filogenia , Conformación Proteica , Mapeo de Interacción de Proteínas , Homología de Secuencia de Aminoácido
20.
Protein Sci ; 31(1): 54-62, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34515387

RESUMEN

The new field of synthetic biology aims at the creation of artificially designed organisms. A major breakthrough in the field was the generation of the artificial synthetic organism Mycoplasma mycoides JCVI-syn3A. This bacterium possesses only 452 protein-coding genes, the smallest number for any organism that is viable independent of a host cell. However, about one third of the proteins have no known function indicating major gaps in our understanding of simple living cells. To facilitate the investigation of the components of this minimal bacterium, we have generated the database SynWiki (http://synwiki.uni-goettingen.de/). SynWiki is based on a relational database and gives access to published information about the genes and proteins of M. mycoides JCVI-syn3A. To gain a better understanding of the functions of the genes and proteins of the artificial bacteria, protein-protein interactions that may provide clues for the protein functions are included in an interactive manner. SynWiki is an important tool for the synthetic biology community that will support the comprehensive understanding of a minimal cell as well as the functional annotation of so far uncharacterized proteins.


Asunto(s)
Proteínas Bacterianas , Bases de Datos Genéticas , Genoma Bacteriano , Anotación de Secuencia Molecular , Mycoplasma mycoides , Programas Informáticos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mycoplasma mycoides/química , Mycoplasma mycoides/genética , Mycoplasma mycoides/metabolismo , Biología Sintética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...